Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
P
planning_llh_bgc
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Larkin Heintzman
planning_llh_bgc
Commits
91fe94ef
Commit
91fe94ef
authored
Apr 10, 2024
by
Bryson Howell
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Running searches without humans. Need to fix path optimizer.
parent
817009a2
Changes
8
Show whitespace changes
Inline
Side-by-side
Showing
8 changed files
with
37 additions
and
14 deletions
+37
-14
robotgp.py
gp/robotgp.py
+23
-4
searchspace.py
larrt/searchspace.py
+3
-1
montecarlo.py
mrmh_model/montecarlo.py
+5
-3
searcher.py
mrmh_model/searcher.py
+1
-1
searcher_cornerLPM.pdf
results/trust-planner/searcher_cornerLPM.pdf
+0
-0
searcher_lpm.png
results/trust-planner/searcher_lpm.png
+0
-0
searcher_ring.png
results/trust-planner/searcher_ring.png
+0
-0
test_trustplanner.py
test_trustplanner.py
+5
-5
No files found.
gp/robotgp.py
View file @
91fe94ef
...
@@ -35,6 +35,7 @@ class RobotGP(torch.nn.Module):
...
@@ -35,6 +35,7 @@ class RobotGP(torch.nn.Module):
self
.
update_mc_hotspots
=
True
self
.
update_mc_hotspots
=
True
self
.
update_searcher_paths
=
True
self
.
update_searcher_paths
=
True
#!! turn grad clamp back on...?
self
.
grad_clamp_value
=
1e50
self
.
grad_clamp_value
=
1e50
#self.grad_clamp = lambda grad: torch.clamp(grad, -self.grad_clamp_value, self.grad_clamp_value)
#self.grad_clamp = lambda grad: torch.clamp(grad, -self.grad_clamp_value, self.grad_clamp_value)
# self.X_batch.tregister_hook(lambda grad: torch.clamp(grad, -self.grad_clamp, self.grad_clamp))
# self.X_batch.tregister_hook(lambda grad: torch.clamp(grad, -self.grad_clamp, self.grad_clamp))
...
@@ -56,6 +57,8 @@ class RobotGP(torch.nn.Module):
...
@@ -56,6 +57,8 @@ class RobotGP(torch.nn.Module):
self
.
scaled_risk_cost
=
1
self
.
scaled_risk_cost
=
1
self
.
scaled_path_length_cost
=
1
self
.
scaled_path_length_cost
=
1
self
.
num_searchers_paths
=
0
self
.
_iter
=
0
self
.
_iter
=
0
self
.
_updates
=
0
self
.
_updates
=
0
self
.
_iter_since_update
=
0
self
.
_iter_since_update
=
0
...
@@ -115,6 +118,8 @@ class RobotGP(torch.nn.Module):
...
@@ -115,6 +118,8 @@ class RobotGP(torch.nn.Module):
def
collect_trainData
(
self
):
def
collect_trainData
(
self
):
# sweep_paths = False in current config
# sweep_paths = False in current config
self
.
collect_mc_trainData
()
self
.
collect_mc_trainData
()
#Get human data
if
(
self
.
params
[
'num_searchers'
]
!=
0
):
self
.
collect_searchers_trainData
()
self
.
collect_searchers_trainData
()
if
self
.
params
[
'path_style'
]
==
'sweep'
:
# lawnmower drones
if
self
.
params
[
'path_style'
]
==
'sweep'
:
# lawnmower drones
...
@@ -147,7 +152,16 @@ class RobotGP(torch.nn.Module):
...
@@ -147,7 +152,16 @@ class RobotGP(torch.nn.Module):
# self.values = np.concatenate( (self.mc_hotspot_values, self.searchers_path_values, self.robot_path_values), axis=0 )
# self.values = np.concatenate( (self.mc_hotspot_values, self.searchers_path_values, self.robot_path_values), axis=0 )
if
self
.
update_mc_hotspots
or
self
.
update_searcher_paths
:
if
self
.
update_mc_hotspots
or
self
.
update_searcher_paths
:
#Collect search paths. Make sure searchers_paths exists when combining inputs
if
(
self
.
num_searchers_paths
==
0
):
self
.
fixed_points
=
np
.
concatenate
((
self
.
mc_hotspots
,
self
.
robot_fixed_paths
),
axis
=
0
)
else
:
self
.
fixed_points
=
np
.
concatenate
((
self
.
mc_hotspots
,
self
.
searchers_paths
,
self
.
robot_fixed_paths
),
axis
=
0
)
self
.
fixed_points
=
np
.
concatenate
((
self
.
mc_hotspots
,
self
.
searchers_paths
,
self
.
robot_fixed_paths
),
axis
=
0
)
#Collect interpolated values
if
(
self
.
num_searchers_paths
==
0
):
self
.
fixed_values
=
np
.
concatenate
((
self
.
mc_hotspot_values
,
self
.
robot_fixed_path_values
),
axis
=
0
)
else
:
self
.
fixed_values
=
np
.
concatenate
(
self
.
fixed_values
=
np
.
concatenate
(
(
self
.
mc_hotspot_values
,
self
.
searchers_path_values
,
self
.
robot_fixed_path_values
),
axis
=
0
)
(
self
.
mc_hotspot_values
,
self
.
searchers_path_values
,
self
.
robot_fixed_path_values
),
axis
=
0
)
self
.
num_fixed_train_points
=
self
.
fixed_points
.
shape
[
0
]
self
.
num_fixed_train_points
=
self
.
fixed_points
.
shape
[
0
]
...
@@ -180,6 +194,9 @@ class RobotGP(torch.nn.Module):
...
@@ -180,6 +194,9 @@ class RobotGP(torch.nn.Module):
self
.
Xstar_batch
.
shape
[
0
])
.
cuda
()
self
.
Xstar_batch
.
shape
[
0
])
.
cuda
()
def
update_trainXY
(
self
):
def
update_trainXY
(
self
):
#Print to check if data is correct
self
.
X
=
torch
.
cat
((
self
.
fixed_points
,
self
.
robot_points
),
dim
=
0
)
.
cuda
()
self
.
X
=
torch
.
cat
((
self
.
fixed_points
,
self
.
robot_points
),
dim
=
0
)
.
cuda
()
self
.
ytrain
=
torch
.
cat
((
self
.
fixed_values
,
self
.
robot_values
),
dim
=
0
)
.
cuda
()
self
.
ytrain
=
torch
.
cat
((
self
.
fixed_values
,
self
.
robot_values
),
dim
=
0
)
.
cuda
()
...
@@ -623,6 +640,8 @@ class RobotGP(torch.nn.Module):
...
@@ -623,6 +640,8 @@ class RobotGP(torch.nn.Module):
self
.
_curr_risk_ratio
=
self
.
min_risk_cost
/
self
.
_init_risk_cost
self
.
_curr_risk_ratio
=
self
.
min_risk_cost
/
self
.
_init_risk_cost
self
.
min_X
=
self
.
X
self
.
_iter_since_update
+=
1
self
.
_iter_since_update
+=
1
# if self.risk_cost_data < self.min_risk_cost:
# if self.risk_cost_data < self.min_risk_cost:
...
...
larrt/searchspace.py
View file @
91fe94ef
...
@@ -38,10 +38,12 @@ class SearchSpace(terrain.Terrain):
...
@@ -38,10 +38,12 @@ class SearchSpace(terrain.Terrain):
def
init_robots
(
self
):
def
init_robots
(
self
):
robot
.
Robot
.
max_nodes
=
self
.
params
[
'max_plan_nodes'
]
robot
.
Robot
.
max_nodes
=
self
.
params
[
'max_plan_nodes'
]
for
ix
in
range
(
self
.
num_robots
):
for
ix
in
range
(
self
.
num_robots
):
#Evenly space robots along edge of terrain
xpos
=
self
.
xmin
+
(
2
*
ix
+
1
)
*
self
.
_xrange
/
(
2
*
self
.
num_robots
)
xpos
=
self
.
xmin
+
(
2
*
ix
+
1
)
*
self
.
_xrange
/
(
2
*
self
.
num_robots
)
ypos
=
self
.
ymin
ypos
=
self
.
ymin
zpos
=
self
.
h_smooth
.
ev
(
xpos
,
ypos
)
+
1
zpos
=
self
.
h_smooth
.
ev
(
xpos
,
ypos
)
+
1
#Sets end goal to opposite edge of terrain
xgoal
=
xpos
xgoal
=
xpos
ygoal
=
self
.
ymax
ygoal
=
self
.
ymax
zgoal
=
self
.
h_smooth
.
ev
(
xgoal
,
ygoal
)
+
1
zgoal
=
self
.
h_smooth
.
ev
(
xgoal
,
ygoal
)
+
1
...
...
mrmh_model/montecarlo.py
View file @
91fe94ef
...
@@ -237,6 +237,8 @@ class MonteCarlo(params.Default):
...
@@ -237,6 +237,8 @@ class MonteCarlo(params.Default):
self
.
p
=
np
.
zeros
((
self
.
_x_shape
,
self
.
_y_shape
),
dtype
=
float
)
self
.
p
=
np
.
zeros
((
self
.
_x_shape
,
self
.
_y_shape
),
dtype
=
float
)
#Show LP Heatmap
#Show LP Heatmap
show
=
False
if
(
show
):
plt
.
imshow
(
self
.
p
)
plt
.
imshow
(
self
.
p
)
plt
.
title
(
'Selected heatmap'
)
plt
.
title
(
'Selected heatmap'
)
plt
.
show
()
plt
.
show
()
...
...
mrmh_model/searcher.py
View file @
91fe94ef
...
@@ -107,7 +107,7 @@ class Searcher(params.Default):
...
@@ -107,7 +107,7 @@ class Searcher(params.Default):
self
.
index
=
Searcher
.
num_searchers
self
.
index
=
Searcher
.
num_searchers
Searcher
.
num_searchers
+=
1
Searcher
.
num_searchers
+=
1
Searcher
.
searchers_list
.
append
(
self
)
Searcher
.
searchers_list
.
append
(
self
)
print
(
"!!Made a searcher"
)
def
get_pos
(
self
):
def
get_pos
(
self
):
return
(
self
.
x
[
0
],
self
.
x
[
1
])
return
(
self
.
x
[
0
],
self
.
x
[
1
])
...
...
results/trust-planner/searcher_cornerLPM.pdf
0 → 100644
View file @
91fe94ef
File added
results/trust-planner/searcher_lpm.png
0 → 100644
View file @
91fe94ef
This diff is collapsed.
Click to expand it.
results/trust-planner/searcher_ring.png
0 → 100644
View file @
91fe94ef
738 KB
test_trustplanner.py
View file @
91fe94ef
...
@@ -184,17 +184,17 @@ if __name__ == "__main__":
...
@@ -184,17 +184,17 @@ if __name__ == "__main__":
if
True
:
if
True
:
n_max
=
3
#Number of robots
n_max
=
3
#Number of robots
s_max
=
1
#Number of searchers (humans)???
s_max
=
0
#Number of searchers (humans)???
h_max
=
0
#Number of humans
h_max
=
0
#Number of humans
#global_fail_max = 1000
#global_fail_max = 1000
global_fail_max
=
5
global_fail_max
=
5
global_fails
=
0
global_fails
=
0
avg_runs
=
1
avg_runs
=
5
start_time
=
time
.
time
()
start_time
=
time
.
time
()
params
=
({
params
=
({
'lp_model'
:
'trust'
,
'lp_model'
:
'trust'
,
#custom, ring, or trust
'opt_iterations'
:
2
,
'opt_iterations'
:
1000
,
'path_style'
:
'basic'
,
'path_style'
:
'basic'
,
'stats_name'
:
'kentland'
,
'stats_name'
:
'kentland'
,
'anchor_point'
:
[
37.197730
,
-
80.585233
],
# kentland
'anchor_point'
:
[
37.197730
,
-
80.585233
],
# kentland
...
@@ -202,7 +202,7 @@ if __name__ == "__main__":
...
@@ -202,7 +202,7 @@ if __name__ == "__main__":
'num_robots'
:
n_max
,
'num_robots'
:
n_max
,
'num_humans'
:
h_max
,
'num_humans'
:
h_max
,
'lp_filename'
:
kentland_heatmap
,
'lp_filename'
:
kentland_heatmap
,
'lin_feat_filename'
:
kentland_linfeat
'lin_feat_filename'
:
kentland_linfeat
,
})
})
params
[
'save_folder'
]
=
'trust_{}_n{}_s{}_{}'
.
format
(
params
[
'save_folder'
]
=
'trust_{}_n{}_s{}_{}'
.
format
(
params
[
'stats_name'
],
n_max
,
s_max
,
params
[
'path_style'
])
params
[
'stats_name'
],
n_max
,
s_max
,
params
[
'path_style'
])
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment